#### Journal of Organometallic Chemistry, 244 (1983) C31-C34 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

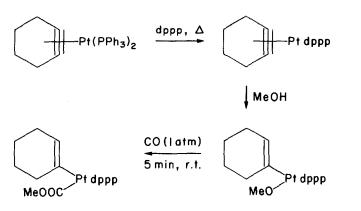
## **Preliminary communication**

# A REMARKABLE DEPENDENCE OF CARBON MONOXIDE INSERTION INTO A PLATINUM(II)—CARBON $\sigma$ -BOND ON THE NATURE OF THE COORDINATED DITERTIARY PHOSPHINE

# MARTIN A. BENNETT\* and ANDRZEJ ROKICKI

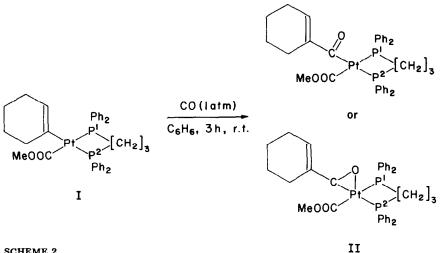
Research School of Chemistry, Australian National University, Canberra, A.C.T. 2600 (Australia)

(Received November 23rd, 1982)


### Summary

The 1-cyclohexenylmethoxycarbonyl complex  $Pt(CO_2Me)(C_6H_9)(dppp)$ (dppp = 1,3-bis(diphenylphosphino)propane,  $Ph_2PCH_2CH_2CH_2PPh_2$ ) undergoes irreversible insertion of CO into the  $Pt-C_6H_9$  bond under ambient conditions to give  $Pt(CO_2Me)(COC_6H_9)(dppp)$ , which may contain a *dihapto*-acyl group; the analogous 1-cyclohexenyl complexes containing 1,2-bis(diphenylphosphino)ethane and *cis*-1,2-bis(diphenylphosphino)ethylene are unreactive under the same conditions.

Although platinum(II) complexes of the type trans-PtClRL<sub>2</sub> (R = alkyl or aryl; L = monodentate tertiary phosphine) undergo insertion of CO into the metal—carbon bond under mild conditions [1—8], similar complexes containing bidentate ligands are reported to be unreactive. Thus, there is no reaction between CO (1 atm) and PtClPhL<sub>2</sub> (L<sub>2</sub> = dppe, appe) or PtPh<sub>2</sub>L<sub>2</sub> (L<sub>2</sub> = dppm, dppe, appe)\* at room temperature after 72 h [8], and the complexes PtMe<sub>2</sub>(R<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PR<sub>2</sub>) (R = Me, Et, Ph) react with CO only under forcing conditions (90°C, 20 atm, 6 h) to give a mixture of products; only in the case of R = Et could the methyl (acetyl) complex be isolated in low yield [1].


We have reported [9] that the cyclohexyneplatinum (0) complex  $Pt(C_6H_8)$ -(dppe) reacts with methanol to form a thermally stable methoxoplatinum (II)

<sup>\*</sup>Abbreviations: dppm = bis (diphenylphosphino)methane, Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>; dppe = 1,2-bis (diphenylphosphino)ethane, Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>; appe = 1-(diphenylarsino)-2-(diphenylphosphino)ethane, Ph<sub>2</sub>AsCH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>; dppp = 1,3-bis (diphenylphosphino)propane, Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>; vdpe = cis-1,2-bis (diphenylphosphino)ethylene, cis-Ph<sub>2</sub>PCH=CHPPh<sub>2</sub>.



SCHEME 1

complex,  $Pt(OMe)(C_{\delta}H_{\circ})$  (dppe), which undergoes rapid insertion of CO into the Pt–O bond to give the methoxycarbonyl species  $Pt(CO_2Me)(C_6H_9)(dppe)$ . Unexpectedly, the similarly prepared dppp analogue (I) (Scheme 1) takes up another mol of CO (benzene, room temperature, 3 h, 1 atm) to give quantitatively the acyl complex  $Pt(CO_2Me)(COC_6H_9)(dppp)$  (II) (Scheme 2). Under similar



SCHEME 2

conditions, the corresponding complexes  $Pt(CO_2Me)(C_6H_9)L_2$  (L<sub>2</sub> = dppe, vdpe) fail to react with CO. Structural assignments are based largely on the <sup>13</sup>C NMR spectra of samples prepared by use of 90% enriched <sup>13</sup> CO (Table 1). Both I and II exhibit a quartet at ca  $\delta$  200 ppm with <sup>195</sup> Pt satellites arising from the metalloester carbon atom which is coupled to cis- and trans-phosphorus atoms. The <sup>13</sup>C NMR spectrum of II shows an additional quartet with <sup>195</sup>Pt satellites at δ 240.3 ppm (<sup>2</sup>J(CP)(cis) 8.7 Hz, <sup>2</sup>J(CP)(trans) 105.5 Hz, <sup>1</sup>J(PtC) 903 Hz) due to the additional carbonyl carbon. The magnitude of the Pt-C coupling constants in II establishes that both carbonyl groups are bound directly to platinum and eliminates the possibility that CO has inserted into the Pt-CO<sub>2</sub>Me bond. This is also evident from selective <sup>31</sup>P-decoupling experiments. Irradiation of the <sup>13</sup>C NMR spectrum of II with the frequency corresponding to phosphorus

#### TABLE 1

|                             | I     | п     |
|-----------------------------|-------|-------|
| δ(Pt-CO,Me)                 | 198.3 | 194.1 |
|                             |       |       |
| $^{2}J(CP)(cis)$            | 12.9  | 14.8  |
| <sup>2</sup> J(CP)(trans)   | 160.4 | 139.5 |
| <sup>1</sup> <i>J</i> (PtC) | 1346  | 1347  |
| δ(Pt-COC,H_)                |       | 240.3 |
| <sup>2</sup> J(CP)(cis)     |       | 8.7   |
| <sup>2</sup> J(CP)(trans)   |       | 105.5 |
| <sup>1</sup> J (PtC)        | -     | 903   |
| δ( <b>P</b> <sup>1</sup> )  | -1.8  | -5.3  |
| $\delta(\mathbf{P}^2)$      | -7.3  | -8.7  |
| $^{1}J(PtP^{1})$            | 1882  | 2017  |
| $^{1}J(PtP^{2})$            | 1564  | 1415  |
| <sup>2</sup> J( <b>PP</b> ) | 22.6  | 26.9  |

<sup>13</sup>C<sup>a</sup> AND <sup>31</sup>P<sup>b</sup> NMR SPECTRAL DATA FOR Pt (CO<sub>2</sub>Me)C<sub>6</sub>H<sub>9</sub>) (dppp) (I) AND Pt (CO<sub>2</sub>Me) (COC<sub>6</sub>H<sub>9</sub>)- (dppp) (II)

<sup>a</sup>In CD<sub>2</sub>Cl<sub>2</sub> with internal TMS. <sup>b</sup>In CH<sub>2</sub>Cl<sub>2</sub> or CD<sub>2</sub>Cl<sub>2</sub>,  $\delta$  in ppm relative to external 85% H<sub>3</sub>PO<sub>4</sub> (positive to high frequency).

atom P<sup>1</sup> ( $\delta$  -5.30 ppm rel. to 85% H<sub>3</sub>PO<sub>4</sub>) collapses the *trans*-coupling to the ester carbon and the *cis*-coupling to the acyl carbon, whereas decoupling of P<sup>2</sup> ( $\delta$  -8.70 ppm) has the opposite effect. The magnitudes of <sup>1</sup>J(PtP<sup>2</sup>) in complexes I and II (Table 1) indicate that the acyl group C<sub>6</sub>H<sub>9</sub>CO has an even higher *trans*-influence than C<sub>6</sub>H<sub>9</sub>; the high *trans*-influence of acetyl is evident from X-ray structural analyses [10-12] and a comparison of the Pt-Cl bond lengths in *trans*-PtClX(PMePh<sub>2</sub>)<sub>2</sub> (X = CH<sub>3</sub>, COCH<sub>3</sub>) indicates the *trans*-influence of acetyl to be greater than that of methyl [13,14].

The IR spectra of I and II show typical metalloester bands at ca. 1625 and 1053 cm<sup>-1</sup> due to  $\nu$ (C=O) and  $\nu$ (C-O-C), respectively, but that of II also shows an intense band at 1569 cm<sup>-1</sup> which must be assigned to  $\nu$ (C=O) of the acyl group. This value is well below the usual range for  $\eta^1$ -acyls (1640-1720 cm<sup>-1</sup>) and suggests the presence in II of a  $\eta^2$ -acyl ligand (cf. Ru( $\eta^2$ -COC<sub>6</sub>H<sub>4</sub>Me-p)-I(CO)(PPh<sub>3</sub>)<sub>2</sub> (1550 cm<sup>-1</sup>) [15] and Ru( $\eta^2$ -COMe)I(CO)(PPh<sub>3</sub>)<sub>2</sub> (1599 cm<sup>-1</sup>) [16]. In contrast with  $\eta^1$ -acyls of the type trans-PtCl(COR)L<sub>2</sub>, II does not undergo decarbonylation to I on heating in organic solvents below 100°C or on heating in vacuo in the solid state at ca. 80°C. However, on heating in ordichlorobenzene or on melting in vacuo, II loses both  $\sigma$ -bonded groups to give unidentified products.

In solution, I undergoes exchange with gaseous <sup>13</sup>CO at the metalloester group before appreciable insertion into the Pt—C<sub>6</sub>H<sub>9</sub> bond has occurred. This process probably involves reversible dissociation of methoxide ion from I to give the cation  $[Pt(C_6H_9)(CO)(dppp)]^+$  which can then exchange with <sup>13</sup>CO via a fivecoordinate dicarbonyl; reversible dissociation of methoxide from a metalloester has been demonstrated in the case of Fe ( $\eta$ -C<sub>5</sub>H<sub>5</sub>)(CO<sub>2</sub>Me)(CO)(PPh<sub>3</sub>) [17]. Complex II also exchanges with <sup>13</sup>CO at the metalloester group but no label appears at the acyl position, showing that insertion of CO into the Pt—C<sub>6</sub>H<sub>9</sub> bond of I is irreversible. C34

The remarkable ability of dppp relative to other ditertiary phosphines to promote insertion of CO into a platinum (II)—carbon  $\sigma$ -bond has parallels in rhodium (I) chemistry. Thus,  $[Rh(dppp)_2]BF_4$  readily adds CO to give fivecoordinate  $[Rh(CO)(dppp)_2]BF_4$  and dihydrogen to give six-coordinate  $[RhH_2(dppp)_2]BF_4$ , whereas  $[Rh(dppe)_2]BF_4$  is inert to both reagents [18,19]. In the series  $[Rh(L_2)_2]BF_4$ , the order of catalytic activity for decarbonylation of benzaldehyde to benzene is  $L_2 = dppp > dppe > dppm$ , dppb [20].

## References

- 1 G. Booth and J. Chatt, J. Chem. Soc. A, (1966) 634.
- 2 C.J. Wilson, M. Green and R.J. Mawby, J. Chem. Soc. Dalton Trans., (1974) 421, 1293.
- 3 P.E. Garrou and R.F. Heck, J. Amer. Chem. Soc., 98 (1976) 4115.
- 4 N. Sugita, J.V. Minkiewicz and R.F. Heck, Inorg. Chem., 17 (1978) 2809.
- 5 G.K. Anderson and R.J. Cross, J. Chem. Soc. Dalton Trans., (1979) 1246; (1980) 1434.
- 6 R.J. Cross and J. Gemmill, J. Chem. Soc. Dalton Trans., (1981) 2317.
- 7 G.K. Anderson, H.C. Clark and J.A. Davies, Inorg. Chem., 20 (1981) 1636.
- 8 G.K. Anderson, H.C. Clark and J.A. Davies, Inorg. Chem., 20 (1981) 3607.
- 9 M.A. Bennett and T. Yoshida, J. Amer. Chem. Soc., 100 (1978) 1750.
- 10 G. Huttner, O. Orama and V. Bejenke, Chem. Ber., 109 (1976) 2533.
- 11 R. Bardi, A. Del Pra, A.M. Piazzesi and L. Toniolo, Inorg. Chim. Acta, 35 (1979) L35.
- 12 G.K. Anderson, R.J. Cross, L. Manojlović-Muir, K.W. Muir and T. Solomun, J. Organometal. Chem., 170 (1979) 385.
- 13 M.A. Bennett, Ho Kin-Chee and G.B. Robertson, Inorg. Chem., 18 (1979) 1061.
- 14 M.A. Bennett, Kin-Chee Ho, J.C. Jeffery, G.M. McLaughlin and G.B. Robertson, Aust. J. Chem., 35 (1982) 1311.
- 15 W.R. Roper and L.J. Wright, J. Organometal. Chem., 142 (1977) C1.
- 16 W.R. Roper, G.E. Taylor, J.M. Waters and L.J. Wright, J. Organometal. Chem., 182 (1979) C46.
- 17 N. Grice, S.C. Kao and R. Pettit, J. Amer. Chem. Soc., 101 (1979) 1627.
- 18 B.R. James and D. Mahajan, Can. J. Chem., 58 (1980) 996, and ref. cited therein.
- 19 D.A. Slack, I. Greveling and M.C. Baird, Inorg. Chem., 18 (1979) 3125.
- 20 D.H. Doughty, M.P. Anderson, A.L. Casalnuovo, M.F. McGuiggan, C.C. Tso, H.H. Wang and L.H. Pignolet, Adv. Chem. Ser., 196 (1982) 65.